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Abstract

The acoustical performance of a submerged linear array of spherical shells in shallow
water is examined by combining the T-Matrix method of solving for multiple acoustic
interactions among separate bodies, with a model for the ocean as a fluid layer over a
half-space of a distinct fluid. The system of source and reflected waves is analyzed by
standard approximate contour integration techniques, valid for the far field of the array.
Calculations using the results show the effects of shallow water on array performance.

INTRODUCTION

The prediction of the performance of an array of active transducers in a variety of conditions
is a significant practical problem, and many methods have been applied to this and related
problems.

Here we model active array performance in shallow water by coupling two representations
of the acoustic field: a T-matrix representation near the array and a representation of the
water “sound channel” with a free surface and a bottom of uniform depth, which overlies a
fluid half-space of differing material properties, i.e, the Pekeris model.

The applicability of the Pekeris model has been discussed at length in the memoir of Prop-
agation of Sound in the Ocean by Ewing, Worzel, and Pekeris [1] and has been instrumental
in explaining acoustical features of sound propagation in coastal waters. More recently, Tol-
stoy and Clay [2] have discussed more accurate models for a shallow water channel which
include the effects of attenuation in the shallow water “waveguide” by: (a) the introduction
of dissipation in the fluid half-space model for the ocean bottom; (b) introduction of a third
or multiple fluid layers; or (c) allowance for the transmission of shear waves into the bottom
half-space. Extensions of the present work could be applied to any of these more elaborate
models with a subsequent increase in the complexity of the problem. For the purpose of
demonstrating the effects of coupling between radiating elements in a shallow water array,
however, the simplest model (the Pekeris model) has been chosen.
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There have been a series of papers concerning sound propagation in shallow water pro-
duced by an array of projectors [3,4,5,6] but in each case, coupling between the individual
elements in the array are neglected. In the present work, this coupling is explicitly taken
into account by a T-matrix type analysis.

The T-matrix approach accounts explicitly for the mutual interactions (including multiple-
scattering effects) of elements from the array, as well as the individual radiation of each
element caused by an internal driving force. A radiated acoustic field in terms of outgoing
spherical harmonic waves from each element is found which is consistent with an array sub-
merged in a fluid of infinite extent. The methodology is similar to that reported by Scandrett
and Canright [7] in which source level calculations for arrays of spherical shells in an infinite
fluid medium were found.

The method of images yields a superposition of reflected plane waves for each spherical
harmonic excited by an element of the array, with the reflection coefficients chosen to give the
correct behavior at the free surface and bottom surface. Intermediate steps taken to account
for the shallow channel conditions consist of: representing a radiated spherical harmonic in
terms of a superposition of plane waves over real and complex angles; constructing an infinite
set of images in order to satisfy the free surface and bottom surface boundary conditions;
formally summing the series; and evaluating the acoustic far field by an application of contour
integration. This sequence of steps has been done in Brekhovskikh [8], and (using a slightly
different formulation) by Ewing, Jardetzky, and Press [9], and Pekeris [1], for the case of a
monopole point source in a Pekeris model for a shallow water channel.

It should be pointed out that the coupled approach taken in the current work neglects
the effects of surface or bottom reflections on the spherical shells themselves. Such effects
will be small if the array is located several wavelengths from the surface and bottom, but if
such effects were deemed important (perhaps for the case of an array near the free surface of
the shallow water channel), the T-matrix approach could easily be extended to include the
“free surface image” of near surface array elements.

FORMULATION

The Pekeris model for a shallow water waveguide is employed in which the upper fluid layer
(ρ = 1000 kg/m3, c = 1524m/s) lies over the bottom fluid halfspace (ρ1 = 2000 kg/m3,
c1 = 1600m/s). The bottom is assumed to be at a constant depth of H = 10m. Embedded
in the fluid layer is an array of steel spherical thin shells which are forced to oscillate in a
breathing mode at a frequency 485Hz (ω). The thin steel shells have a radius of .5m(a),
are .0026162m (h) thick and have the material properties : E = 2.07 × 1011N/m2, ν = .3,
and ρs = 7669 kg/m3.

The governing equations used are:
Fluid:

∇2p+ k2p = 0 , k =
ω

c
, 0 > z > −H (1)

∇2p1 + k2
1p1 = 0 , k1 =

ω

c1
, z < −H (2)
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p(x, y, 0) = 0 , p1(x, y, z) → 0 as z → −∞ (3)

1

ρ

∂p

∂z
(x, y,−H) =

1

ρ1

∂p1

∂z
(x, y,−H) (4)

Shell:

Ω2u+ uθθ + cotθuθ + (1 + ν)wθ − cot2θu− νu

−(3 − ν) cos θ

2 sin2 θ
vφ +

1 + ν

2 sin θ
vθφ +

1 − ν

2 sin2 θ
uφφ = 0 (5)

Ω2v +
1 − ν

2
(vθθ + cotθvθ) +

(1 − ν)(2 − csc2θ)

2
v +

1 + ν

sin θ
wφ

+
(3 − ν) cos θ

2 sin2 θ
uφ +

1

sin2 θ
vφφ +

1 + ν

2 sin θ
uφθ = 0 (6)

Ω2w + (1 + ν)(uθ + cotθu+
1

sin θ
vφ + 2w) = −(1 − ν2)a2

Eh
p+ F (θ, φ) (7)

Fluid/Structure Interface:

∇p · ~nj = iωρwj (8)

where

Ω =
ωa

cp
, cp =

√
E

(1 − ν2)ρs
(9)

and ~nj is the unit normal to the jth shell.
A periodic e−iωt time dependence is assumed in the solution, and all distances are scaled

by the value of the wavenumber k, which equals 2 for the values of ω and c given above,
resulting in ka = 1 for the prescribed problem, with a scaled layer depth of twenty. (See fig.
1 for a schematic of the problem as stated.)

METHODS

In a previous work of the authors [7], source level calculations of a low-frequency active array
of elastic spherical shells with specified internal forcing were found. In that work however,
results were applicable only to arrays of projectors in an infinite fluid medium. The acoustic
pressure field produced by the array was represented by a superposition of outgoing spherical
waves for which far-field source level calculations were made.
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The starting point of the present analysis begins with this series representation of the
acoustic field for an unbounded fluid medium.

p(x) =
L∑

l=1

N∑

n=0

n∑

m=−n

Bl
nmh

(1)
n (krl)P

m
n (cos θl)e

imφl (10)

where the harmonic time dependence e−iωt is omitted. The l index refers to individual
elements of the array (with the spherical coordinates (rl, θl, φl) relative to the position of
the lth element) while the m,n indices are over the spherical harmonics excited by the lth

spherical shell, and whose number is truncated by the value of N . The amplitudes (Bl
nm)

incorporate the forced radiation of the lth spherical shell, as well as reflection of acoustic
pressures from the remaining spherical shells of the array.

The shallow water effects are included by considering a single spherical harmonic excited
by a single spherical shell, with a view to determine how the acoustic field produced by this
single harmonic must be modified in order to satisfy the free surface and bottom boundary
conditions present in the shallow water channel. Summation over all harmonics and all
spherical shells can then be done after the effect of a single harmonic of a single array
element has been found. The effect of the mutual array element interactions is present by
virtue of the manner in which the Bl

nm have been calculated.
While the radiated field is expressed in terms of spherically spreading waves, the spherical

waves must be reformulated in terms of plane waves in order to account for the angle depen-
dence of the reflection coefficient at the interface between two fluid media. Each outgoing
spherical wave can be written as a superposition of plane waves as follows [10,11]:

h(1)
n (kr)Pm

n (cos θ)eimφ = (±1)m+n i
−n

2π

∫ 2π

0

∫ π
2
−i∞

0
eikr cos γPm

n (cosα)eimβ sinα dα dβ (11)

where the double integral is over plane waves in all directions (including complex angles,
corresponding to “inhomogeneous” plane waves) and cos γ ≡ sin θ sinα cos(φ−β)±cos θ cosα
with the upper signs for plane waves propagating above the source (z > 0), and the lower
sign for plane waves propagating below the source (z < 0). (The contour integral in α runs
along the real axis to π/2, then parallel to the imaginary axis.)

The reflection (V1) and transmission (T ) coefficients for a plane wave of unit amplitude
striking a planar interface between two fluids of differing material properties at an angle α
with respect to the normal of the interface are given by:

V1(α) =
δ cosα−

√
η2 − sin2 α

δ cosα +
√
η2 − sin2 α

T (α) =
2 cosα

δ cosα +
√
η2 − sin2 α

(12)

where δ ≡ ρ1/ρ (δ = 2) is the ratio of densities and η ≡ c/c1 (here η = 1524/1600) is the
index of refraction. The reflection coefficient at the free surface is V2 = −1.

Starting with upward and downward traveling plane waves emanating from a source point
at an angle of α from vertical, a series of image plane waves are constructed, which when
combined with the incident plane waves, produces an infinite series of plane waves satisfying
the free surface and interface boundary conditions. Such a series for the region above the
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source point −z0 (0 > z > −z0), is found to be:

ei(kxx+kyy)
∞∑

j=0

V j
1 V

j
2 e

ikz(z+z0+j2H) + (−1)m+nV1e
ikz(z−z0+(j+1)2H)

+ V2e
ikz(−z+z0+j2H) + (−1)m+nV1V2e

ikz(−z−z0+(j+1)2H) (13)

where kx ≡ sinα cos β, ky ≡ sinα sin β, kz ≡ cosα. (Similar series for the regions −H < z <
−z0 and z < −H can be found.)

Formally summing these series and performing the integration in β yields the resultant
integral for the acoustic field produced by the (n,m) harmonic:

im−neimφ
∫ π/2−i∞

0
V (α)Pm

n (cosα)Jm(kR sinα) sinαdα (14)

where R ≡
√
x2 + y2 is the horizontal distance from the source point, and

V (α) =

(ebz − e−bz)(eb(z0−H) + (−1)n+mV1(α)e−b(z0−H))

e−bh + V1(α)ebH
, 0 > z > −z0

(−1)n+m(e−bz0 − ebz0)(V1(α)eb(z+H) + e−b(z+H))

e−bh + V1(α)ebH
, −z0 > z > −H

(−1)n+m(e−bz0 − ebz0)T (α)e−b1(z+H)

e−bh + V1(α)ebH
, −H > z (15)

with b = ik cosα and b1 = ik
√
η2 − sin2 α.

Evaluation of these integrals with slight modifications is detailed in Ewing, Jardetzky,
and Press [9]. For the integral valid for 0 > z > −z0, a change of variables produces the
integral

I0 =
2i

k
im−neimφ

∫ ∞

0

N(u)

D(u)
Jm(Ru)Pm

n (
ν

k
) sin(zν)

u du

ν
(16)

where

N(u) =

{
δν cos[(z0 −H)ν] + iν1 sin[(z0 −H)ν] m + n even
iδν sin[(z0 −H)ν] + ν1 cos[(z0 −H)ν] m + n odd

(17)

D(u) = δν cos[Hν] − iν1 sin[Hν] (18)

ν =
√
k2 − u2 , ν1 =

√
k2

1 − u2 (19)

This integral is evaluated using contour integration, by introducing a small imaginary
perturbation of the wavenumbers which shift the poles of the integrand into the first quadrant
of the complex u plane. A branch cut following a hyperbolic path emanates from the branch
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point at u = k1 and asymptotically approaches the positive imaginary axis (the integrand is
“even” in ν so there is no cut emanating from u = k, and the Riemann surface is two-leaved).
The Riemann surface chosen is such that the imaginary part of ν1 is positive (to ensure decay
of any waves propagating into the bottom half space).

The integral I0 is split into two parts (integrals I1 and I2) by rewriting the Bessel function
Jm(Ru) = 1

2
[H(1)

m + H(2)
m ] (superscripts of the Hankel functions correspond to subscripts of

the I’s). The path of integration chosen to determine each of these integrals is shown in
fig. 2. The contour integration in the first quadrant correponds to the integral I1, while I2’s
contour is in the fourth quadrant.

The line integrals C1 and C8 vanish as R → ∞. The integrals C4 + C9 and C5 + C10

cancel in pairs for the case m is even due to the identity H(2)
m (−Ru) = (−1)m+1H(1)

m (Ru). In
the event m is odd, the integrals can be shown to decay exponentially as R → ∞.

The branch cut integrals (C2 and C3) are combined; a change of variables is performed
(x2 = k2

1−u2, where along C2, ν1 = −x and along C3, ν1 = x); and the asymptotic expansion
of H(1)

m for large argument (R) is used. The combined branch cut integrals can be written:
∫ ∞

0
F (x, φ, z)eiR

√
k2
1−x2

dx as R→ ∞ (20)

with

F (x, φ, z) =
2i−n

k

√√√√ 2

πRi
√
k2

1 − x2
eimφN(

√
k2

1 − x2)Pm
n (

√
γ2 − x2

k
)

× sin[z
√
γ2 − x2]√

γ2 − x2

x2 sin[H
√
γ2 − x2]

δ2(γ2 + x2) cos2[H
√
γ2 − x2] + x2 sin2[H

√
γ2 − x2]

(21)

and γ =
√
k2 − k2

1. Expanding F (x, φ, z) in a Taylor series about x = 0, using integration by
parts, and a stationary phase analysis results in a leading-order behavior for the branch cut
integrals of O(1/R2). Therefore in the far-field analysis the branch cut integral is negligible
compared to the contribution of the contour integral from the poles.

For the present problem, there are two real roots (up) to D(u) which lie in the interval
k1 < up < k. The two roots are graphically displayed in fig. 3, and have the values:
u1 ≈ 1.98522 and u2 ≈ 1.93544. Ultimately we obtain the far-field approximation for the
integral I0:

I0 ≈ 2πi

Hk
im−neimφ

×
∑

p

Pm
n (νp/k)H

(1)
m (Rup)νpH sin(zνp)S(up)

Hνp − cos(Hνp) sin(Hνp) − δ−2 sin2(Hνp) tan(Hνp)
(22)

with z0 equal to the depth of the spherical shell’s center, R the horizontal distance from the
sphere’s center, νp =

√
k2 − u2

p, and

S(up) =

{
i sin(z0νp) m + n even
cos(z0νp) m + n odd

(23)

The residual calculations for the region −z0 > z > −H yield identical results, whereas
for z < −H a similar calculation produces the result:
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−2πi

Hkδ
im−neimφ

∑

p

Pm
n (νp/k)H

(1)
m (Rup)νpH sin(Hνp)e

(z+H)
√

u2
p−k2

1S(up)

Hνp − cos(Hνp) sin(Hνp) − δ−2 sin2(Hνp) tan(Hνp)
(24)

Summing now over each spherical harmonic, and over each spherical shell, using the large
argument approximation for the Hankel function, and reordering the summations gives

P ≈
N∑

m=−N

∑

p

Amp(φ0)Ψmp(φ0, z) (25)

Amp(φ0) =
2πi

Hk

νpH

νpH − cos(νpH) sin(νpH) − δ−2 sin2(νpH) tan(νpH)

×
∑

l

e−iup(xl
0 cos φ0+yl

0 sin φ0)

{
i sin νpz

l
0 m + n even

cos νpz
l
0 m + n odd

}
N∑

n=|m|
Bl

nmi
m−nPm

n (
νp

k
) (26)

ψmp(φ0) =

√
2

πR0up

eiR0up−iπ/4 i−meimφ0

{
sin(νpz) 0 > z > −H
− sin(Hνp)e

(z+H)
√

u2
p−k2

1 z < −H
(27)

with (xl
0, y

l
0, z

l
0) the center of the lth spherical shell, φ0 is the observation angle measured from

a reference origin of the array, and R0 is a reference far-field distance from the array origin.
Note that for a general array, the amplitude has angular dependence, but for a vertical array,
values of xl

0 and yl
0 are zero, and therefore amplitudes are independent of the observation

angle.
In the problem studied here, a vertical array has been used. The “eigenfunctions” for

the half space problem (in the z coordinate) are shown in fig. 4. Due to the orthogonality
of these eigenfunctions, when determining the power output from the array, the total power
output is simply the sum of the power output from each of the eigenmodes. The total power
is calculated by performing the integral:

lim
R0→∞

R0

2ω

{
1

ρi

∫ −H

−∞

∫ 2π

0
|p(R0, φ, z)||

∂p

∂R0

(R0, φ, z)| dφ dz

+
1

ρ

∫ 0

−H

∫ 2π

0
|p(R0, φ, z)||

∂p

∂R0
(R0, φ, z)| dφ dz

}
(28)

The power output per mode for the case of the vertical array is given by:

Πmp =
H‖Amp‖2

ρckνpH

{
νpH − sin(νpH) cos(νpH) − δ−2 sin2(νpH) tan(νpH)

}
(29)

and the total power is then:

Πtotal =
∑

m,p

Πmp (30)
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RESULTS

As a first test of the resulting formulas, a vertical array of two spherical shells are placed
in the middle of the sound channel separated by scaled distances of 6.0 and 12.4 units. For
the 6.0 separation, the proportion of power in the first and second modes are .808 and .192
respectively, while for the 12.4 unit separation, the respective powers are 1.0 and 0. Figs.
5a and 5b plot contour lines of the downfield pressure field as a function of depth and radial
distance in meters. As can be seen from fig. 5a (the 6.0 unit separation), a sinusoidally
shaped bell (which corresponds to high amplitude or illuminated zones) is present, with a
wavelength close to that determined analytically from the formula [2]:

Λ12 =
2π

u1 − u2
≈ 252m (31)

Fig. 5b with the 12.4 unit separation is a case in which power is being transmitted in
only the first mode. There is no apparent sinusoidal behavior in the field, but one can see
the effect of radial drop off by the downward sloping pressure amplitude contour lines.

In the next three figures, power transmission from the two element array are shown for
a range of spacing between the spheres. In these figures the shells are centered about the
middle of the sound channel. Figs. 6 and 7 graph the proportion of power transmitted
into the first and second “modes” of the waveguide. As can be seen, at a separation of
about 6m all the power is transmitted in the first mode of propagation, while for decreasing
separations, amplitude of the second mode increases to its maximum value of about 28%.
Also shown in these two figures is the effect of increasing the number of spherical harmonics
included in the code. The proportional power calculations are unaffected by an increase in
the number of spherical harmonics kept (N) from 2 to 5.

In addition, figs. 6 and 7 highlight a curious feature of the results. A third set of displayed
data shows that the coupling between the spherical shells can be discounted in determining
relative power outputs. In this third data set, the radiation field amplitudes (Bl

mn) are just
the values that a single spherical shell would have in an infinite fluid medium. As one can
see, the proportion of power found by neglecting coupling between spherical shells yields
nearly identical results to those of the fully coupled case. Only a slight variation results
when the shells are in close proximity.

If one considers the total power output from the array, however, a distinct difference
between the independently radiating spherical shells, and the coupled shells can be seen
in fig. 8. From this figure it is apparent that the coupling between spheres can have a
profound effect on the amount of total power delivered by the array - overestimating the
total power by as much as 50% or underestimating it by as much as 20% when the shells are
close. It should be noted that the scaled wavelength of the radiated field is 2π. Therefore
the general conclusion drawn for this simple two element array, is that separations between
array elements which are whole number multiples of the wavelength increase, while array
separations at alternate half wavelength decrease the total power output, but do not affect
the proportion of power distributed between propagating modes of the sound channel.

As a final graph, the effect of adjusting the relative array origin as well as the relative
separation of the spherical shells is examined. Fig. 9 is a contour graph of the total power
output from the two element array as a function of scaled separation between array elements
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and depth of the array. (A line drawn horizontally across this graph is essentially the graph
in fig. 8.) Two “peaks” are apparent. In each of these, the scaled separation is on the order
of a wavelength (≈ 6). The peaks are also close to either the free surface or the bottom
interface of the fluid layer. This is assumed to be due to the fact that image sources are
closer to the actual sources in each case.

CONCLUSIONS

This technique has the advantage over strictly numerical techniques in that the problem
has been decoupled into manageable parts. The methodology could easily be extended to
consider actual transducers by the addition of T matrix calculations for the given transducers.
Such work is in progress. Using finite elements to determine the T matrix for a given class
of transducer, and inputting the matrix into the above semi-analytic technique can be used
to determine an arbitrary array configuration’s power output at a prescribed frequency of
operation.

A limitation of the above analysis is that a relatively simple model of a shallow water
environment has been employed. Extensions to more realistic conditions might include using
the radiation coefficients found from the coupled elements immersed in an infinite fluid (Bl

nm

from above) as inputs to a parabolic approximation method, or a ray method.
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FIGURE CAPTIONS

Figure 1. The Pekeris model of a shallow water channel of uniform depth containing an
array of radiating spherical steel shells.

Figure 2. The contour integral evaluated in determining the far field response of the radi-
ating spherical harmonic h(1)

m (kr)eimφPm
n (cos θ). Along C2 the real and imaginary parts of

ν1 are negative and zero, while along C3 ν1’s real and imaginary parts are positive and zero.

Figure 3. Poles of the Integrand. Intersections of the curves tan(
√
Hν) and δν/iν1 as

functions of ν.

Figure 4. Pressure Field Eigenfunctions. Eigenfunction profiles as functions of depth for
the two trapped modes.

Figure 5. Far-Field Pressure Contours for two different spherical shell spacings. For the
top figure the array center ias located at the center of the channel, and the spacing between
shells is 3 meters. For the bottom figure, the array center is again at the channel center but
the separation is now 6.2 meters.

Figure 6. Relative Power Output In First Propagating Mode (Π01/Π
total).

Figure 7. Relative Power Output In First Propagating Mode (Π02/Π
total).

Figure 8. Total Scaled Power Output (Scaled by the Power Output from a Single Spherical
Shell in an Unbounded Fluid)

Figure 9. Total Scaled Power as a Function of Shell Separation and Array Center Depth
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